20岁保养是维护 30岁保养是维修 40岁保养是急救 50岁保养是抢救

20岁保养是维护 30岁保养是维修 40岁保养是急救 50岁保养是抢救 衰老开始的表现一个重要原因 —  体内NAD+水平的严重下降 皮肤生理学和营养学的研都指出,女性在22-25岁开始,新陈代谢就会减缓20%左右,别看数字不大,反应在身体里面还是很明显的。所以从22岁开始,根据自己的体质,要开始做初期抗老了。 其次,年龄越大,抗老和保养护理的效果比在年轻时候会差。抗老化保养,只能在肌肤的现有情况之下维持原状,更进一步才是修复肌肤细胞,最大程度使皮肤年轻化。 为什么补充NMN增加NAD+含量水平,能让皮肤恢复青春态 ?   33,835 total views, no views today

33,835 total views, no views today

七种人体长寿基因 SIRT

Sirt1 长寿基因修复DNA和动脉 Sirt2 长寿基因可以减少体内脂肪和氧化应激 Sirt3 长寿基因被认为会影响寿命 Sirt4 长寿基因可以抑制肿瘤并帮助自噬 Sirt5 长寿基因帮助减少肝脏中的脂肪酸和氧化应激 Sirt6 长寿基因调节血糖并降低胰岛素抵抗 Sirt7 长寿基因使心脏受益 Sirt1 长寿基因修复DNA和动脉  SIRT1是在sirtuins家族7家族中研究得最好的。 科学家认为,随着年龄的增长,NAD +利用率的下降会降低肝脏中的SIRT1,同时会增加DNA损伤。 在动脉中还可以看到SIRT1水平的年龄依赖性下降,表明其参与了心血管系统的衰老。 随着SIRT1长寿基因水平的降低,细胞变得更易于凋亡(一种程序性细胞死亡的形式),研究人员认为,SIRT1长寿基因下降是维持DNA修复,凋亡和衰老之间平衡的一种机制。 (衰老细胞是在正常细胞停止分裂而变得像僵尸一样,既没有生命也没有死亡,但是破坏了正常细胞之间正常健康的信号时发生的。) 功效:减少细胞衰老,体内炎症,心血管、肥胖、胰岛素抵抗、脂肪肝等疾 病发生率; Sirt2 长寿基因可以减少体内脂肪和氧化应激 SIRT2与调节脂肪(脂肪)组织的发育和功能有关。 肥胖者的脂肪组织中的SIRT2较少,而受卡路里限制的小鼠的白色脂肪组织和肾脏中的SIRT2则更多。 这意味着SIRT2表达与减少体内脂肪有关。 SIRT2的另一个突出作用是,它可以用作细胞衰老标记,因为它在衰老(僵尸)细胞中很显着,但在进入凋亡的细胞(死细胞)中却不显着。 但是,科学家们并不认为SIRT2是导致衰老的因素,而可能是衰老过程中细胞发生变化的影响。 功效:减少神经系统疾 病,增加细胞周期调控,脂肪组织发育和功能,对应心脏、肾脏、肝脏、骨骼肌、血管组织的加强和表达; Sirt3 长寿基因被认为会影响寿命 SIRT3是目前证据表明可以影响人类寿命的唯一信息。 SIRT3基因的某种多态性(遗传变异)在长寿人群中更为常见。 较少的人存活到老年的可能性较小。 缺乏SIRT3的小鼠的特征在于减少的耗氧量和同时增加的活性氧(ROS,通常称为“自由基”)的产生,以及肌肉中较高的氧化应激。 功效:减少氧化应激反应,心肌肥大,脂肪肝和肥胖发生率,调节线粒体代谢和ATP合成,增加葡萄糖动态平衡和代谢能力,增加身体能 量; Sirt4 长寿基因可以抑制肿瘤并帮助自噬 SIRT4可以充当癌基因(可以将细胞转化为肿瘤细胞的基因)和抑癌基因,这可能取决于受影响的组织类型和特定的肿瘤环境。 当与葡萄糖代谢抑制剂一起使用时,SIRT4显示出增强的抗肿瘤治疗潜力。 有望进行更多研究,以研究SIRT4与化学疗法药物联合使用对葡萄糖代谢及其对自噬的影响(细胞开始将受损和垃圾部分(缺陷)回收成基本成分,从而使细胞自我重塑的条件) )。 功效:减少脂肪酸氧化,调节线粒体代谢,DNA修 复,胰岛素分泌,对血管、胸腺、睾丸、大脑、心脏有改 善调节作用。 Read more…

10,518 total views, no views today

补充 NMN 促进脑血管再生

科学家提供的基因证据表明,补充 NMN 可促进血管再生,为大脑提供营养。 今年 4 月,俄克拉荷马大学的一组科学家在 GeroScience 上发表了一项研究,根据基因表达谱,他们发现补充烟酰胺单核苷酸 (NMN) 可以逆转衰老对神经血管单位的影响并恢复细胞通路的老鼠大脑。 NMN 补充剂可能成为老年人对抗由神经血管单元功能障碍引起的与年龄相关的恶化的潜在干预措施。 补充 NMN 可提高一种称为烟酰胺腺嘌呤二核苷酸 (NAD+) 的分子水平,该分子在寿命调节、新陈代谢和细胞健康中起着至关重要的作用。 NAD+ 水平随着年龄的增长而下降,并且依赖于 NAD+ 激活的称为 sirtuins 的蛋白质的激活也会如此。 NAD+ 依赖性去乙酰化酶维持 DNA 和染色体健康,并有助于细胞健康维护。该研究的研究人员查看了基因活性谱,以确定在老年小鼠中注射 NMN 是否激活了与 sirtuin 激活相关的基因。 通过测量基因的活性(称为基因表达谱),研究小组发现,在接受 NMN 治疗的老年小鼠中,大约 55% 的神经血管单位基因恢复到年轻的活性水平。结果表明,NMN 治疗可逆转神经血管单元基因活性中与衰老相关的变化。 其他结果显示,sirtuin 调节基因中的基因活性与年龄相关的变化,并且这些变化中的大部分在 NMN 治疗后被逆转。虽然哺乳动物中存在七种类型的sirtuin,但科学家团队专注于一种——SIRT1。他们在老年小鼠中发现了 SIRT1 敏感基因的失调,但 NMN 治疗逆转了这些影响。 除了通过 SIRT1 提供保护外,该研究的遗传学数据还显示,NMN 使老年小鼠的细胞能量产生动力——线粒体恢复活力。用 NMN Read more…

22,657 total views, no views today

烟酰胺单核苷酸 (NMN) 补充剂可挽救脑微血管内皮功能和神经血管耦合反应,并改善老年小鼠的认知功能

通过神经血管耦合 (NVC) 调节脑血流量 (CBF) 与神经元活动,在维持健康的认知功能方面起着关键作用。在衰老过程中,氧化应激增加和脑微血管内皮功能障碍损伤 NVC,导致认知能力下降。越来越多的证据表明,随着年龄的增长,NAD + 可用性的下降在一系列与年龄相关的细胞损伤中起关键作用,但它在 NVC 受损中的作用本研究的目的是验证 NAD + 浓度的恢复可能对衰老过程中的 NVC 反应产生有益影响的假设。验证这一点假设,一种关键的 NAD + 中间体烟酰胺单核苷酸 (NMN) 被给予 24 个月大的 C57BL / 6 只小鼠 2 周。通过测量对侧晶须刺激(激光)的 CBF 反应来评估 NVC多普勒流量计)。我们发现 NVC 响应在衰老小鼠中显着受损。 NMN 补充剂通过增加内皮无介导的血管舒张来拯救 NVC 反应,这与空间工作记忆和步态协调的显着改善有关。这些发现与保护性有关NMN对sirtuin的影响,sirtuin在老年动物培养的脑微血管内皮细胞来源的线粒体中产生活性氧和线粒体生物能。因此,NAD + 利用率的下降将导致年龄相关脑微血管功能障碍,加剧认知能力下降。NMN对脑微血管的保护作用凸显了NAD+中间体作为血管性认知障碍(VCI)风险患者的有效干预措施的预防和治疗潜力。 NMN.COM 16,633 total views, no views today

16,633 total views, no views today

NAD+前体改善糖尿病患者肌肉的能量产生

阿西莫司在临床研究中增强人体骨骼肌线粒体功能

2 型糖尿病患者可能有许多并发症,其中之一通常是肌肉无力。这可以部分归因于细胞的发电机线粒体。这些细胞结构驱动新陈代谢,这一过程依赖于关键的、充满活力的化合物烟酰胺腺嘌呤二核苷酸 (NAD+)。由 NAD+ 介导的维持生命的活动可以通过 NAD+ 前体增强,至少在动物中是这样。但是 NAD+ 前体是否可以补充 NAD+ 水平以恢复线粒体功能可以转化为人类,更不用说糖尿病患者还没有真正得到测试。 (more…)

4,357 total views, no views today

NMN科普 :NMN凭什么是补充NAD+的最佳方式?

众所周知,人类衰老的本质在于人体内的NAD+水平会随着年龄的增长而逐渐减少。NAD+是人体内的重要辅酶,主导和参与人体近四分之一的生理活动,此外,其还是合成DNA修复酶和长寿蛋白必不可少的物质,所以它对于人体的健康有着极其重要的影响。科学研究发现,正是NAD+的逐年减少导致了人类的衰老。因此,外源性提升NAD+水平才成为了干预衰老的重要手段。
 

(more…)

7,019 total views, no views today

【科技文献】中国研究表明 骨骼形成需要NMN

四川大学的研究表明,NAD+是骨髓干细胞修复骨折所不可或缺的。 强调 在人类中,NMN 是骨干细胞成熟为称为成骨细胞的骨生成细胞所必需的。 增强 NMN 合成可促进骨干细胞成熟,产生更多成骨细胞,并促进骨形成。 阻断 NMN 合成通过抑制骨干细胞发育成骨生成细胞来损害小鼠的骨折修复。 当我们骨折时,我们骨髓中的干细胞会设计一个多阶段的过程来修复和治愈骨折。骨髓中的这些干细胞称为骨间充质干细胞 (BMSCs),对骨再生至关重要。骨折愈合延迟或失败,发生在 5-10% 的病例中,通常可以追溯到 BMSC 活性不足或功能失调。 中国四川大学的研究人员报告说,提高 NAD+ 水平对于 BMSCs 产生称为成骨细胞的成骨细胞并形成骨骼是必不可少的。在哺乳动物中,NAD+ 主要由 NMN 通过一种称为 NAMPT 的酶合成。Li 及其同事表明,阻断 NAMPT 可阻止人类 BMSCs 成熟为成骨细胞并减少骨形成。另一方面,通过增强 NAMPT 活性来提高 NAD+ 水平可促进 BMSC 成熟为成骨细胞并刺激骨形成。这种范例适用于培养皿中的细胞和动物,因为在活小鼠中阻断 NAMPT 会抑制骨折修复。发表在《干细胞研究与治疗》上的这项研究表明,NAD+ 可能为骨修复和再生提供潜在的治疗靶点。 更好地重建骨骼 BMSCs 目前被用作组织再生和干细胞治疗的种子细胞。这些可自我更新的细胞有可能分化成多种类型的细胞,包括成骨细胞和产脂肪细胞(脂肪细胞)。骨髓间充质干细胞以一种相互排斥的方式转化为这些细胞——也就是说,它们通常成熟为这两个谱系中的一个。了解如何调整尺度以​​控制 BMSC 向成骨细胞成熟对骨修复具有重大影响。 多种因素有助于骨髓间充质干细胞对骨骼或脂肪形成的谱系承诺,包括细胞外环境和细胞代谢。细胞产生能量的主要途径,氧化磷酸化,是线粒体最关键的代谢活动之一。细胞还可以通过糖酵解在细胞质中产生能量——这种产生能量的方式比氧化磷酸化效率低;通过线粒体氧化磷酸化的糖代谢可以产生比糖酵解多十五倍的能量。但关于氧化磷酸化和糖酵解在调节 BMSCs 细胞命运决定和成熟中的作用知之甚少。 人体骨骼形成依赖于 NMN Read more…

11,448 total views, no views today

【科技文献】梅奥诊所研究表明脊髓神经依赖於 NAD+

在小鼠中,高脂肪饮食会导致称为髓鞘的传导性神经涂层降解,但它们可以通过前体 NMN 恢复 NAD+ 水平来再生。 By Jonathan D. Grinstein, Ph.D. Published: 10:46 am PST Oct 11, 2021 | Updated: 1:53 p.m. PST Oct 15, 2021   重大亮点 ● 高脂肪饮食会降低小鼠的 NAD+ 水平,从而对产生髓鞘的细胞(称为寡突胶质细胞)的存活和功能产生不利影响。 ● 通过遗传或基於药物的操作灭活 CD38(一种 NAD+ 消耗酶)可提高寡突胶质细胞的存活率。 ● 使用 NAD+ 前体 NMN 恢复 NAD+ 水平可防止寡突胶质细胞丢失并促进髓鞘修复。   对於有意识和潜意识的任务,从拥抱到呼吸,我们的神经系统需要以闪电般的速度发送电信号。 为了实现类似生物光纤的传输,我们称为神经元的神经细胞在髓鞘中绝缘——髓鞘是一种用於快速神经通讯的导电覆盖物。 但是当髓鞘被破坏时,随着年龄的增长丶某些遗传疾病(如多发性硬化症)和新陈代谢不良而发生,我们就容易受到永久性脊髓和脑损伤的影响。 因此,所有的速食和不运动不仅不利於您的新陈代谢; 它会破坏髓鞘涂层,从而严重削弱日常生活中必不可少的神经信号。 发表在学术期刊《神经科学》(The Journal of Neuroscience)上的梅奥诊所的研究表明,白质(髓鞘包裹的神经投射穿过大脑和脊髓的地方)会因高脂肪消耗而受损。 这是通过破坏一种称为烟酰胺腺嘌呤二核苷酸 (NAD+) 的重要代谢辅酶的水平而发生的,导致将髓磷脂添加到神经元的细胞──即称为寡突胶质细胞的神经系统细胞丧失。 但是通过阻止 Read more…

6,081 total views, no views today