可不可以不变老 ?:唤醒长寿基因的科学革命

可不可以不变老 ?:唤醒长寿基因的科学革命 Lifespan: Why We Age and Why We Don’t Have To 作者:辛克萊,拉普蘭提 出版日期:2020/06/30   老化就是致病的最大元兇(摘自第3章 盲目的傳染病) 不過,用不著任何研究或統計數據來說明,我們都明白現在的情況,老化隨處可見,年紀愈大愈明顯。 五十歲時,我們開始注意到自己的外表看來像我們的父母,頭髮漸白,皺紋愈來愈多;到了六十五歲,若那時沒有罹患某種疾病或身有殘疾,我們便認為自己算得上幸運;如果八十歲左右我們仍然在世,幾乎能肯定的是,那時一定在與病魔對抗,生活變得更艱難、不舒適,也不怎麼愉悅。 根據一項研究發現,八十五歲的男性平均被診斷出患有四種不同疾病,而同齡女性則患有五種疾病,心臟病與癌症,關節炎和阿茲海默症,腎臟病和糖尿病,多數患者還有其他幾種未確診的疾病,包括高血壓、缺血性心臟病、心房顫動,和失智症等。沒錯,這些不同的疾病具有不同病狀,分別在美國國家衛生研究院不同的大樓,和大學裡不同的系所中進行研究。 可是,老化是上述所有疾病的風險因子。 事實上,老化是致病的唯一風險因子。 相較之下,其他事顯得無關緊要。 以我母親在世最後幾年為例。我和大家一樣,清楚吸菸會增加我母親罹患肺癌的機率,但我也知道原因:香菸煙霧中含有一種名為苯芘(benzo[a]pyrene)的化學物質,會與DNA裡的鳥嘌呤結合,引起雙股斷裂,導致變異;而且DNA 修復過程中還會導致表觀基因體游離與代謝途徑改變,因此,在這個因老化誘發腫瘤形成(geroncogenesis)的過程中,癌細胞會蓬勃發展。 長年接觸香菸煙霧引發基因和表觀遺傳的變化,兩者結合使罹患肺癌的機會增加了約五倍。 正因吸菸導致罹癌機率升高許多,再加上癌症治療相關的巨額醫療成本,世上許多國家都有補助戒菸計劃,也有許多國家在菸品外包裝貼上健康警語,其中有些附有嚇人的彩色圖片,像是腫瘤或四肢發黑的照片。許多國家也通過立法規範,禁止某些菸品廣告,還有許多國家透過懲罰性的課稅來減少消費。 所有措施都只是為了防止幾種癌症五倍的增加率,而身為一位目睹自己母親深受肺癌折磨的人,我會率先發聲,說這一切努力完全值得。不論從經濟或情感角度出發,這些行動都是值得的投資。 但是,請考慮以下幾點,儘管吸菸會讓罹癌的風險增加五倍,但當你五十歲時,會讓你的罹癌風險增加百倍,到了七十歲時,風險更增加上千倍。 如此成倍增加的機率同樣適用於心臟病、糖尿病,以及失智症,族繁不及備載。即便如此,世上沒有一個國家投入大量資源來幫助國民對抗老化,在當今鮮少達成共識的世界裡,大家對老化的感覺就是「命該如此」。 光榮的戰役 老化導致身體退化。 老化影響生活品質。 而且,老化有特定的病理。 老化符合上述條件,因此,它也符合我們稱之為「疾病」的所有條件,只除了一點之外,它影響了半數以上的人口。 根據《默克老年病手冊》(The Merck Manual of Geriatrics),一個影響不到半數人口的病就是疾病。但是,老化卻影響了所有人。因此,該手冊將老化稱為「即使沒有受傷、生病、環境風險或不當的生活方式,器官功能必然也會隨時間衰退,且無法逆轉」。 你能想像說癌症是必然且不可逆嗎?或是糖尿病?或壞疽? 我可以,因為我們曾經如此說過。 這些疾病或許是自然而然形成的問題,但不表示它們就必然且不可逆;當然也不表示我們就得照單全收。 《默克老年病手冊》對老化的看法錯了。 然而,錯誤看法從未阻止過傳統觀念對公共政策產生不利的影響。正因「老化並非疾病」是普遍被接受的定義,所以,老化不見得適合納入我們所建立的體系,像是醫療研究經費、藥物開發、保險公司醫療費用報銷等項目。 用語很重要,定義很重要,論述框架也很重要,然而,我們用來描述老化的用語、定義,和框架都與必然性有關。我們不是在開戰前就先扔了毛巾投降,而是在還不知道可以選擇打仗前就先停止抵抗了。 話雖如此,我們確實可以打這場仗,這場光榮的全球之戰,而且,就我認為,這會是一場勝仗。 沒道理發生在49.9%的人身上的病是疾病,但發生在50.1%的人口上的卻不是,世界各地的醫院與研究中心之所以建立出像在打地鼠般的醫療體系,正是因為這種落後的問題解決方法。 若我們能解決影響所有人的問題,特別是如此一來,還能對所有其他較小的問題產生顯著影響,為何選擇只關注影響少數族群的問題? 我們能解決影響所有人的問題。 Read more…

6,562 total views, 2 views today

端粒效应——揭开染色体与衰老之间的秘密

■朱海亮 衰老是个古老而神秘的话题,长生不老是人类一直追求的目标,而生物体的衰老却是一个必然的过程,是随着时间的推移,机体从构成物质、组织结构到生理功能的丧失退化的过程。 近日,《实验医学杂志》刊发的一项研究表明我们的染色体会随着机体的变老而一起变老。那么我们能不能通过改变染色体来延缓衰老、保持健康长寿呢?目前,世界上很多科学家都在尝试解决这一问题。 2016年《自然》杂志上的一项关于衰老的研究成果入选《科学》杂志甄选的“2016年十大突破”。无独有偶,近日,中科院上海神经科学研究所的蔡时青研究员课题组在《自然》杂志上发表的研究成果首次阐述了个体之间衰老速率差异的遗传基础,是近年来衰老领域取得的重大突破。这些最新成果使抗衰老的研究热度再次升高。 染色体的“保镖” 在生物的细胞核中,有一种载有遗传信息的线状物质,它们被称为“染色体”。染色体主要由DNA和蛋白质组成,是生物生长发育的“指导手册”。在染色体的末端有个染色体的“保镖”,即端粒。人类的端粒由6个碱基的重复序列和结合蛋白组成,它对染色体的功能有着重要的作用。 端粒可类比为鞋带两端防止磨损的塑料套,像塑料套保护鞋带一样保护染色体。它能在保持染色体完整的同时,防止染色体彼此相互粘连,保护染色体上DNA的安全。遗憾的是,这个保镖需要不断作出牺牲:细胞每分裂一次,端粒就会缩短一点,细胞分裂次数越多,端粒就缩短得越多。通俗地说,就是细胞越老,端粒就越短。当它们变得太短时,细胞就不再分裂,开始变得不活跃、衰老直至死亡。因此,端粒又被称为生命体的“分子时钟”。 端粒酶是细胞中一种负责延长端粒的酶。在年轻的细胞中,它在端粒末端加上碱基,可以让端粒免受过度磨损,使细胞分裂的次数增加。但随着细胞分裂,端粒酶的数量不足,端粒逐渐缩短,细胞开始老化。如果端粒酶的活性很高,就能保持端粒的长度,延缓细胞的老化。三位美国科学家因“发现端粒和端粒酶是如何保护染色体的”获得2009年诺贝尔生理学或医学奖。但端粒酶也会帮助无用细胞的增殖,并促进癌症的形成,因此也被喻为“炸弹引信”。 “长生不老”的钥匙 因为端粒酶在细胞老化和癌化过程中都起着关键性的作用,所以被认为是“长生不老”的钥匙。而实验研究表明,端粒也不是永远只会变短,实际上也有可能变长。 不久前,休斯顿卫理公会研究所的科学家采用RNA疗法的技术,发现可逆转细胞衰老。研究人员发现早衰症患儿的染色体端粒比常人要短,因此他们以儿童早衰症作为研究对象。该疗法首先将特定的RNA送入细胞内,RNA再向细胞传达“延长染色体端粒”的信息,从而促进端粒酶的生成。利用这种疗法,所有的细胞衰老标记物都得到了逆转。研究者Cooke表示,我们至少可以减缓或阻断患者机体中衰老的进度,他正计划对现有的疗法进行改进。 此外,因为端粒酶对肿瘤细胞的永生化是必要的,所以它可以作为抗肿瘤药物的重要靶点。目前市场上基于端粒效应用于延长端粒的“端粒酶类”药物和检测试剂有很多,这些研究成果也引发了大量的炒作,有病例因服用增强端粒酶活性的药物而导致患上癌症。 今年8月份,我国首个利用端粒酶技术进行肺部肿瘤辅助诊断的检测试剂——“端粒酶逆转录酶亚基(hTERT)mRNA检测试剂盒”经国家食品药品监督管理总局批准上市,为肺癌辅助诊断提供了一种快速、便捷的检测手段。 另外,衰老不是一个恒定不变的过程,而且衰老速率受到多种因素的影响。《细胞》杂志上的一篇关于衰老的文章就总结出影响衰老的九大因素,除了端粒的耗损,还有营养代谢失调等因素。 2009年诺贝尔生理学或医学奖获得者之一伊丽莎白·布莱克本在2017年1月份出版了《端粒效应》一书,书中介绍生活压力对端粒长度也有影响:母亲照顾生病的小孩的时间越长,她的端粒长度就越短,压力让她们的衰老加速。年龄越大的人,染色体末端越短;抽烟喝酒的人,染色体末端也较短。 “抗老之路”任重而道远 事实上,生命的智慧远比我们想象的深远得多。许多疾病都是由衰老造成的,如果我们能通过端粒效应解决这个问题,就能解决很多疾病。 目前,各种新技术成功延长了染色体端粒的长度,这为战胜衰老导致的疾病带来了希望。科学家也正在研究是否能用药物遏制端粒酶,从而治疗癌症。药物能够延长端粒是极好的,但使用药物延长端粒很危险,我们还需要严格地测试它,改变生活方式比药物安全得多。 深入研究染色体变化与衰老、癌症之间的关系,将是未来生命科学的重要突破。随着分子生物学的发展,衰老研究也将进入基因时代。生命科学发展至今,许多生命的奥秘还是未知数,有待进一步探究。因此,我们在抗衰老问题上还有很长的路要走。 文章来自: 《中国科学报》 (2018-01-04 第6版 前沿)   2,994 total views, no views today

2,994 total views, no views today